Abstract

The 2008 eruption of Chaitén volcano in southern Chile severely impacted several densely forested river catchments by supplying excess pyroclastic sediment to the channel networks. Our aim is to substantiate whether and how channel geometry and forest stands changed in the Rayas River following the sudden input of pyroclastic sediment. We measured the resulting changes to channel geometry and riparian forest stands along 17.6km of the impacted gravel-bed Rayas River (294km2) from multiple high-resolution satellite images, aerial photographs, and fieldwork to quantify yield volume characteristics of the forest stands. Limited channel changes during the last 60years before the eruption reflect a dynamic equilibrium condition of the river corridor, despite the high annual precipitation and the sediment supply from Chaitén and Michinmahuida volcanoes in the headwaters. Images taken in 1945, 2004, and 2005 show that total size of the vegetated channel islands nearly doubled between 1945 and 2004 and remained unchanged between 2004 and 2005. Pyroclastic sediment entering the Rayas River after the 2008 eruption caused only minor average channel widening (7%), but killed all island vegetation in the study reach. Substantial shifts in the size distribution of in-channel vegetation patches reflect losses in total island area of 46% from 2005 to 2009 and an additional 34% from 2009 to 2012. The estimated pulsed release of organic carbon into the channel, mainly in the form of large wood from obliterated island and floodplain forests, was 78–400tC/km/y and surpasses most documented yields from small mountainous catchments with similar rainfall, forest cover, and disturbance history, while making up between 20% and 60% of the annual carbon burial rate of fluvial sediments in the northern Patagonian fjords. We conclude that the carbon footprint of the 2008 Chaitén eruption on the Rayas River was more significant than the measured geomorphic impacts on channel geometry for the first five years following disturbance. The modest post-eruptive geomorphic response in this river is a poor indicator of its biogeochemical response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.