Abstract

For the first time, vibrational spectra of the pyridine cation in the electronic ground state have been measured via several intermediate states (0(0), 16b0(2), 16b0(4), 6a0(1), 6b(1), 16a0(1), 10a0(1) and 12(1)) by Mass-Analyzed Threshold Ionization (MATI) spectroscopy. From the MATI spectra, the adiabatic ionization energy of pyridine has been determined to be 74,185 +/- 6 cm(-1) (9.1978 +/- 0.0008 eV). Several vibronic modes in the ionic ground state could be assigned for the first time. An intensity gain of vibrations having b1 symmetry could be observed by activating the ion ground state. Also, a breakdown of the "delta nu = 0 propensity rule" for the excitation via the 16b(2) and 16b(4) states of the first excited states are displayed in the recorded spectra. In conjunction with ab initio calculations these observations can be explained by a strong geometrical distortion along the 16b vibration in the first excited state, leading to a "boat distortion".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call