Abstract

Prospects for expanding the available mass measurements of the Kepler sample are limited. Planet masses have typically been inferred via radial velocity (RV) measurements of the host star or time-series modeling of transit timing variations (TTVs) in multiplanet systems; however, the majority of Kepler hosts are too dim for RV follow-up, and only a select number of systems have strong enough TTVs for time-series modeling. Here, we develop a method of constraining planet mass in multiplanet systems using low signal-to-noise ratio (S/N) TTVs. For a sample of 175 planets in 79 multiplanet systems from the California-Kepler Survey, we infer posteriors on planet mass using publicly available TTV time series from Kepler. For 53 planets (>30% of our sample), low-S/N TTVs yield informative upper bounds on planet mass, i.e., the mass constraint strongly deviates from the prior on mass and yields a physically reasonable bulk composition. For 25 small planets, low-S/N TTVs favor volatile-rich compositions. Where available, low-S/N TTV-based mass constraints are consistent with RV-derived masses. TTV time series are publicly available for each Kepler planet, and the compactness of Kepler systems makes TTV-based constraints informative for a substantial fraction of multiplanet systems. Leveraging low-S/N TTVs offers a valuable path toward increasing the available mass constraints of the Kepler sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.