Abstract
This work is devoted to direct mass transportation proofs of families of functional inequalities in the context of one-dimensional free probability, avoiding random matrix approximation. The inequalities include the free form of the transportation, Log-Sobolev, HWI interpolation and Brunn–Minkowski inequalities for strictly convex potentials. Sharp constants and some extended versions are put forward. The paper also addresses two versions of free Poincaré inequalities and their interpretation in terms of spectral properties of Jacobi operators. The last part establishes the corresponding inequalities for measures on R + with the reference example of the Marcenko–Pastur distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.