Abstract
We introduce and study rough (approximate) lower curvature bounds for discrete spaces and for graphs. This notion agrees with the one introduced in [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press] and [K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65–131], in the sense that the metric measure space which is approximated by a sequence of discrete spaces with rough curvature ⩾ K will have curvature ⩾ K in the sense of [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press; K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65–131]. Moreover, in the converse direction, discretizations of metric measure spaces with curvature ⩾ K will have rough curvature ⩾ K. We apply our results to concrete examples of homogeneous planar graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.