Abstract

A mathematical model and its solution were developed to calculate the mass transport through catalytic membrane layer by means of explicit, closed expressions even in the case of the nonlinear Michaelis-Menten reaction kinetics and/or of variable mass transport — diffusion coefficient, convective velocity — parameters. Some typical examples on the Thiele modulus, applying the Michaelis-Menten kinetics and its limiting cases, namely the first-order kinetic (KM≫cm) and zero-order kinetic (cm≫KM) are shown for the prediction of the concentration distribution and the mass transfer rates as a function of the reaction modulus, namely first-order- and the zero-order reactions. It was shown the significant differences of the results obtained by the three different reaction orders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.