Abstract

In this paper we analyze a mass transportation problem that consists in moving optimally (paying a transport cost given by the Euclidean distance) an amount of a commodity larger than or equal to a fixed one to fulfil a demand also larger than or equal to a fixed one, with the obligation of paying an extra cost of −g1(x) for extra production of one unit at location x and an extra cost of g2(y) for creating one unit of demand at y. The extra amounts of mass (commodity/demand) are unknowns of the problem. Our approach to this problem is by taking the limit as p→∞ to a double obstacle problem (with obstacles g1, g2) for the p-Laplacian. In fact, under a certain natural constraint on the extra costs (that is equivalent to impose that the total optimal cost is bounded) we prove that this limit gives the extra material and extra demand needed for optimality and a Kantorovich potential for the mass transport problem involved. We also show that this problem can be interpreted as an optimal mass transport problem in which one can make the transport directly (paying a cost given by the Euclidean distance) or may hire a courier that cost g2(y)−g1(x) to pick up a unit of mass at y and deliver it to x. For this different interpretation we provide examples and a decomposition of the optimal transport plan that shows when we have to use the courier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.