Abstract

It is pointed out that mass transport in an artery, such as LDL transport, influences the progression of stenosis severely. Mass transport in blood flow through an stenosed tube is analyzed numerically. Flow is assumed to be periodic, incompressible and axisymmetric. Non-Newtonian viscosity of blood and movement of arterial wall are considered. The effect of pulsation, non-Newtonian property of blood and wall movement on mass transport is investigated. Flow pattern, concentration pattern and distribution of concentration gradient on the wall are obtained. It is found that the effect of the vortex on mass transport on the wall changes drastically with Schmidt number. In low Schmidt number flow the strength of vortex and its center position is important. Therefore, time-mean mass transport on the wall has maximum value at certain frequency because of the resonance of the vortex. On the other hand, whether the vortex downstream of the stenosis flows away or not becomes important in high Schmidt number flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.