Abstract

Mass transport processes in the food industry are mostly based on the diffusion of soluble products out of food tissue. The main barrier for the diffusion is the biological membrane separating the inner cellular material from the outside. A rupture of the membrane results in an enhanced diffusion rate resulting in a higher yield of the product located in the cell. Most methods used for disintegration of cellular material are mechanical, chemical or thermal based treatments. A new promising technique for cell rupture is the application of pulsed electric fields (PEF). The product is treated with pulses of microseconds at a high electric field strength. The electric field affects the cell membrane of the biological tissue in order to increase the permeability resulting in pore formation. Pore formation facilitates the diffusion process. Moderate PEF settings are used to achieve a disintegration of the cellular material. Some researchers define a moderate PEF treatment by applying a field strength of 0,5 to 1,0 kV/cm and treatment times in a range of 100 and 10.000 μs. The same effects were obtained by other researchers using electric field strengths of 1 to 10 kV/cm and shorter treatment times in the range of 5 to 100 μs (Schilling et al., 2007; Corrales et al., 2008; Lopez et al., 2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.