Abstract

Abstract : The overall scientific objective of the proposed effort is to improve our understanding of the propagation and mass transport of internal solitary waves (ISW), particularly mode-2 ISW, and their significance for coastal ocean processes. In recent years numerous observations of mode-2 ISW have been reported so that it appears that such waveforms may be more prevalent than previously thought. Large amplitude mode-2 solitary waves have unique properties, in particular they encompass regions of internal recirculation that enable mass transport over large distances. Transport of mass along a pycnocline can affect upper ocean mixing and distribution of biological and chemical constituents. Moreover, coherent ISW packets can have significant effects on the propagation and scattering of acoustic signals. The overall scientific objective of the proposed effort is to improve our understanding of the propagation and mass transport of internal solitary waves (ISW), particularly mode-2 ISW, and their significance for coastal ocean processes. In recent years numerous observations of mode-2 ISW have been reported so that it appears that such waveforms may be more prevalent than previously thought. Large amplitude mode-2 solitary waves have unique properties, in particular they encompass regions of internal recirculation that enable mass transport over large distances. Transport of mass along a pycnocline can affect upper ocean mixing and distribution of biological and chemical constituents. Moreover, coherent ISW packets can have significant effects on the propagation and scattering of acoustic signals. The overall scientific objective of the proposed effort is to improve our understanding of the propagation and mass transport of internal solitary waves (ISW), particularly mode-2 ISW, and their significance for coastal ocean processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.