Abstract
Mass transfer through cylindrical semipermeable walls is analyzed. The solution is obtained in terms of integral equations. Despite the existence of a non-homogeneous boundary condition on the semipermeable wall, the solution thus obtained is particularly advantageous since the associated eigenvalue problem is independent of the Sherwood number. This parameter takes into account the main conductances at the tube wall. The approach is applied to the case of mass transfer from the interior of a capillary tube with semipermeable walls to an external fluid. The flow in the tube is laminar, and the external flow is assumed turbulent. The mathematical methodology employed provides a framework to develop numerical schemes of fast and sure convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.