Abstract

The removal of methanol and 1-butanol from gaseous streams by absorption with water was investigated in the RPB equipped with blade packings. The overall volumetric gas-phase mass transfer coefficient (KGa) for methanol and 1-butanol absorption was observed to increase with the rotational speed, the gas flow rate, and the liquid flow rate. Also, the local volumetric gas-phase mass transfer coefficient (kGa) was estimated, and then the portion of the total resistance to mass transfer in gas phase was determined. The result indicated that more than 90% of the total resistance to mass transfer in methanol and 1-butanol absorption was found to be due to the gas phase. Comparison with the conventional packed tower demonstrated that mass transfer efficiency in the RPB equipped with blade packing was higher than that in the conventional packed tower. Consequently, the RPB equipped with blade packings would be an excellent absorber for the removal of alkanols from the exhausted gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call