Abstract

It is necessary to improve the performance and reduce the aeration cost is of wastewater treatment by aerobic biofilm systems. Nanobubble aeration is supposed to be a promising method to achieve these goals. Compared with coarse bubbles, dissolved oxygen profiling showed that the nanobubbles provided more oxygen to biofilms, offering superior oxygen supply capacity and 1.5 times higher oxygen transfer efficiency. Nanobubble aeration accelerated the growth of the biofilm and achieved better removal efficiencies of chemical oxygen demand and ammonia, with as maximum as six times higher dehydrogenase activity, and more extracellular polymeric substance content than when using the traditional aeration mode. This is attributed to the enhancement of metabolism and the proliferation of microorganisms. Confocal laser-scanning microscopy imaging confirmed that nanobubble aeration affected the components of biofilm by shifting the microbial community and changing its metabolic pathways of biofilms, such as carbohydrate synthesis. Nanobubble aeration resulted in an energy saving of approximately 80%. The assessment of nanobubble aerated biofilm growth suggests that this technique can offer a rapid-initiation, high efficiency, and low-cost strategy for aerobic biofilm systems in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.