Abstract

A self-consistent model of the kinetically nonequilibrium near-surface layer of a cometary nucleus is developed on the basis of the gas-kinetic approach. The weight method of direct statistical simulation is used to model numerically the two-dimensional gas outflow from an ice sample subjected to radiative heating. The effective coefficient of water ice sublimation is estimated. Mass transfer in a porous ice and mineral (scattering) nonisothermal medium is investigated by the method of test particles, and the effective gas release is evaluated taking into account the proper rotation of the cometary nucleus for various model parameters. In these calculations, allowance is made for the kinetic character of the flow and volume sublimation and condensation of the volatile constituents of the material of the cometary nucleus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call