Abstract

A theoretical analysis was developed to predict the apparent viscosity of a non-Newtonian fluid in a rotating packed bed. It is based on laminar liquid film flow on a rotating disk with the assumption of the randomly inclined surfaces in the rotating packed bed. In addition, experiments of deoxygenation were performed in glycerol solutions and CMC solutions, which are Newtonian and shear-thinning fluids, respectively. It is shown that mass transfer coefficients decreased with increasing viscosity, while the centrifugal force still revealed effective in enhancing mass transfer in viscous media. A correlation for mass transfer coefficient was proposed and valid for both the Newtonian and non-Newtonian fluids. Compared with a packed column, the influence of mass transfer coefficients by liquid viscosity was less in a rotating packed bed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.