Abstract

AbstractThis article investigates the effect of inlet shape, entrance length, and turbulence promoters on mass transfer by using 3D‐printed electrolyzers. Our results show that the inlet design can promote turbulence and lead to an earlier transition to turbulent flow. The Reynolds number at which the transition occurs can be predicted by the ratio of the cross‐sectional area of the inlet to the cross‐sectional area of the electrolyzer channel. A longer entrance length results in more laminar behavior and a later transition to turbulent flow. With an entrance length of 550 mm, the inlet design did no longer affect the mass transfer performance significantly. The addition of gyroid type turbulence promoters resulted in a factor of 2 to 4 increase in mass transfer depending on inlet design, entrance length, and the type of promoter. From one configuration to another, there was a minimal variation in pressure drop (<1600 Pa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.