Abstract
The mass transfer performance of a pulsed disc and doughnut column for extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA was investigated. The effects of operating parameters such as pulsation intensity, continuous and dispersed phase velocities on column performance were investigated. The axial dispersion model was used to obtain the overall mass transfer coefficient. The previous models for overall mass transfer coefficient were reviewed and compared with experimental data. A new correlation was derived for prediction of the overall mass transfer coefficients. The presented model was compared with the experimental results and a good agreement between them was obtained.The mass transfer experiments revealed the feasibility of operating the separation of samarium and gadolinium in the pulsed disc and doughnut columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Chemistry & Chemical Engineering-international English Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.