Abstract

AbstractThe low mass transfer rate in porous materials hinders the use of adsorbed natural gas as vehicle fuel. Fundamentally, the mass transfer rate depends on the structures of the adsorbents and the operating conditions. Therefore, in this study, the effects of adsorbent (activated carbons) structure and operating conditions on the mass transfer rate of methane (main component of natural gas) were investigated quantitatively, providing a theoretical basis for the synthesis of efficient adsorbent materials. By performing Monte Carlo and molecular dynamics simulations and utilizing a nonequilibrium thermodynamic linearization transfer model, the mass transfer behavior of methane in porous carbon materials was quantitatively evaluated, specifically focusing on the material structure, operating conditions, and feasibility of using natural gas as vehicle fuel. The proposed linear nonequilibrium thermodynamic mass transfer model is applicable to interfacial gas species and provides a valuable tool for gas separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.