Abstract

Various models have been proposed to describe the mass transfer of indicator ions to gas-evolving electrodes. For verification of the proposed models, the dependence of the mass transfer coefficient of indicator ions,k j, on the length,L e, of a gas-evolving electrode may be very useful. Experimental relations betweenk j andL e have been determined for oxygen-evolving as well as hydrogen-evolving vertical electrodes in a supporting electrolyte of 1 M KOH. Moreover, a modified hydrodynamic model, where a laminar solution flow is induced by rising bubbles, has been proposed in order to calculatek j. It has been found that this model is not useful for both types of gas-evolving electrodes. The experimental results support the earlier proposed convection-penetration model for the oxygen-evolving electrode. The solution flow near a vertical electrode, induced by rising bubbles, behaves in a turbulent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.