Abstract

AbstractSpray towers allow for controlling air pollution in which a liquid is sprayed in small droplets to produce a large interfacial area for mass transfer between a gas and a liquid phase. An experimental study of a spray tower for removing SO2 is described. The experiments were carried out under different operating conditions by varying the gas velocity, liquid flow rate, and SO2 concentration. SO2 removal efficiency, volumetric mass transfer coefficient, and liquid‐film formation as a result of the collision of droplets against the tower wall are investigated. Removal efficiency and volumetric mass transfer coefficient are analyzed as a function of gas velocity, liquid flow rate, and SO2 concentration, while liquid‐film formation is evaluated as a function of tower height. The results indicate high removal efficiency. Correlations to predict the volumetric mass transfer coefficient are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.