Abstract

AbstractPrecipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)2) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman spectroscopy was used to determine the composition of the solids during semi‐batch crystallization. The obtained spectra revealed the dissolution of Mg(OH)2 and the formation of MgCO3. The precipitation rate increased with higher gas flow rate. The rotation speed of the stirrer had a significant effect on the dissolution of Mg(OH)2. In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3·3H2O), as needle‐like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation precipitation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.