Abstract

The root of most of the technicolor (TC) problems lies in the way the ordinary fermions acquire their masses, where an ordinary fermion [Formula: see text] couples to a technifermion [Formula: see text] mediated by an extended technicolor (ETC) boson leading to fermion masses that vary with the ETC mass scale [Formula: see text] as [Formula: see text]. Recently, we discussed a new approach consisting of models where TC and QCD are coupled through a larger theory, in this case the solutions of these equations are modified compared to those of the isolated equations, and TC and QCD self-energies are of the irregular form, which allows us to build models where ETC boson masses can be pushed to very high energies. In this work we extend these results for 331-TC models, in particular considering a coupled system of Schwinger–Dyson equations, we show that all technifermions of the model exhibit the same asymptotic behavior for TC self-energies. As an application we discuss how the mass splitting of the order [Formula: see text](100) GeV could be generated between the second and third generation of fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call