Abstract

The integration of complementary analytical platforms has emerged as a suitable strategy to perform a comprehensive metabolomic characterization of complex biological systems. In this work, we describe the most important issues to be considered for the application of a mass spectrometry multiplatform in Alzheimer's disease research, which combines direct analysis with electrospray and atmospheric pressure photoionization sources, as well as orthogonal hyphenated approaches based on reversed-phase ultrahigh-performance liquid chromatography and gas chromatography. These procedures have been optimized for the analysis of multiple biological samples from human patients and transgenic animal models, including blood serum, various brain regions (e.g., hippocampus, cortex, cerebellum, striatum, olfactory bulbs), and other peripheral organs (e.g., liver, kidney, spleen, thymus). It is noteworthy that the metabolomic pipeline here detailed has demonstrated a great potential for the investigation of metabolic perturbations underlying Alzheimer's disease pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.