Abstract

Bioaerosols are airborne particles that may contain pathogenic species that can cause serious risks to various government and public sectors. The major health concern due to bioaerosols is that certain communicable diseases are transmitted through airborne particles, including viruses, bacteria, and fungi. Biological warfare agents can be disseminated as bioaerosol particles and could pose severe safety issues for military operations as well as serious economic and health concerns to the public. Thus, it is imperative to develop and implement real-time detection and accurate identification technologies for the monitoring of bioaerosols. Mass spectrometry (MS) techniques have been developed and improved in their sensitivity, fieldability, and compatibility to bioaerosol analysis and characterization in real-time settings. MS techniques have shown promise in the real-time analysis of bioaerosols. An overview of bioaerosol MS is presented for general perspectives on its application for detection and identification capabilities. Also, the capabilities of MS techniques and the nature of their output and impact on the detection and identification of bioaerosols will be discussed. Exploration of the advantages and drawbacks of the applications for different MS techniques in the analysis of bioaerosols is addressed.KeywordsDust SampleSinapinic AcidMass Spectrometry TechniquePicolinic AcidBacterial AerosolThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call