Abstract

The complete high resolution mass spectra of progesterone (Δ 4-pregnene-3,20-dione) and twenty-nine stereoisomers and alkyl substituted analogs have been analyzed with the aid of the recently developed computer program INTSUM. Progesterone analogs with “normal” configuration at the six chiral skeletal carbon atoms give rise to abundant ions corresponding to cleavage of the 1–2 and 3–4 bonds (ketene elimination), to cleavage of the 6–7 and 9–10 bonds (ring B cleavage), and to cleavage of the 13–17 and 15–16 bonds (partial ring D cleavage); these reactions are frequently followed by elimination of alkyl radicals. Alkyl groups at C-6 and C-10 exert a pronounced influence on the formation and fragmentation of the [M-ketene] ions. Reversal of configuration at C-10 increases the importance of ring B cleavage, whereas reversal at C-17 favors the partial cleavage of ring D. The fragmentation of 17-alkylprogesterones differs significantly from the general pattern, with acetyl loss (cleavage of the 17–20 bond) and partial ring D cleavage as the predominating reactions. Loss of ring D by cleavage of the 13–17 and 14–15 bonds is not an important reaction of progesterones. Direct interaction of the two ketonic functions was not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.