Abstract

The abundant and heterogeneous distribution of toxic phenol from plastics has drawn worldwide attention. However, the common analysis methods failed to identify the accurate species of these phenolic hazards from plastics in a direct and nondestructive approach. Herein, we demonstrate the layered double hydroxides (LDHs) as a novel matrix in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for low-molecular-weight phenols leaked from plastics. LDHs own abundant hydroxyl groups to facilitate chemoselectivity and ionization of phenols through the formation of hydrogen bonds with these phenols. More importantly, the LDH matrix could provide a distinguishable signal for the homolog and isomeride of these phenolic hazards. The developed method could realize nondestructive and in situ mapping of phenolic hazards in plastics. Our success could help to track the low-molecular-weight compounds liberated from plastics and supply spatial information for polluted plastics. We anticipated that the proposed approach could provide sufficient information to evaluate and alarm the safety of food packaging plastics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.