Abstract

The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.