Abstract

A straightforward method using mild enzymatic digestions combined with MALDI mass spectrometry (MS) was used to enhance determination of the multiple phosphorylation sites of a set of recombinant nucleotide-binding proteins in Escherichia coli, including kinases and cystathionine beta-synthase (CBS) domain containing proteins. The protein kinases reveal abundant phosphorylations in the kinase domains and relatively low phosphogluconoylation (258 Da) at the N-terminal His-tag. In contrast, the CBS domain-containing proteins possess a highly conserved phosphorylation in vivo at Ser-2 of the His-tag. Multistage MS/MS and selected reaction monitoring established that the CBS domain proteins also contain a combined modification of gluconoylation (178 Da) and phosphorylation (80 Da) at two different sites, instead of an isobaric phosphogluconoylation (258 Da) event at the N-terminus. Functional analysis of 20 recombinant proteins as identified by mass spectrometry has shown the phosphorylation at the N-terminal His-tag is relevant to nucleotide binding and phosphotransfer reaction catalyzed by a serine protein kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.