Abstract

Although several insect cuticular genes and proteins are annotated and an arthropod cuticular database is available, mass spectrometrical data on cuticular proteins and their post-translational modifications are limited. Wings from Hebemoia glaucippe were analyzed by scanning electron microscopy or homogenized, proteins were extracted and run on 2DE. In-gel digestion was carried out by using trypsin, chymotrypsin and Asp-N and subsequently the resulting peptides and post-translational modifications were identified by ion trap tandem mass spectrometry (nano-LC-ESI-MS/MS; HCT). A complex wing skeleton and the cuticle of H. glaucippe were demonstrated. Cuticle protein 18.6, isoform A, pupal cuticle protein, cuticular protein CPR59A and two putative proteins, putative cuticular protein B2DBJ and putative cuticle protein CPG31 with two expression forms were identified. Two phosphorylation sites on the same peptide, T213 and S214, were identified on putative cuticle protein CPG31, quinone formation was observed at Y76 on cuticular protein CPR59A probably indicating the presence of post-translational modifications. The results may be relevant for the interpretation of mechanoelastic and physical properties of these proteins. Along with the extraordinary architecture the proteinaceous matrix is probably representing or allowing the unusual aerodynamic function of the butterfly wing. Moreover, the results may be important for mechanisms of insecticide and drought resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.