Abstract
We report a mass spectrometric study on sodium ion induced central nucleotide deletion from protonated oligonucleotides (ONTs) and the concurrent recombination of the terminal nucleotides. To shed some light on the mechanism behind this intriguing fragmentation channel, we have studied the metastable decay of a number of different protonated hexameric and octameric oligonucleotides with 0-6 and 0-8 of their exchangeable protons replaced with sodium ions, respectively. In selected cases, we have also studied the further fragmentation of the parent ions after initial base loss. Our findings are concurrent with a reaction mechanism where the initial step is the elimination of a protonated, high proton affinity (PA) base from the center of the ONTs. This is followed by an elimination of a (next neighbour) nucleotide that contains a second high PA base and the concurrent recombination of the terminal nucleotides. To our knowledge, such central nucleotide deletion in the gas phase has only been reported in one previous study (Flosadóttir et al., J. Am. Soc. Mass Spectrom 20:689-696, 2009), and this is the first systematic approach to understand the mechanism behind this channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.