Abstract

BackgroundA comprehensive understanding of DNA adducts, one of the most plausible origins of cancer mutations, is still elusive, especially in human tissues in clinical settings. Recent technological developments have facilitated the identification of multiple DNA adducts in a single experiment. Only a few attempts toward this “DNA adductome approach” in human tissues have been reported. Geospatial information on DNA adducts in human organs has been scarce.AimMass spectrometry of human gastric mucosal DNA was performed to identify DNA adducts associated with environmental factors.Materials and methodsFrom 59 subjects who had received gastrectomy for gastric cancer, 306 samples of nontumor tissues and 15 samples of tumors (14 cases) were taken for DNA adductome analysis. Gastric nontumor tissue from autopsies of 7 subjects without gastric cancer (urothelial cancer, hepatocellular carcinoma, lung cancer each; the other four cases were without any cancers) was also investigated. Briefly, DNA was extracted from each sample with antioxidants, digested into nucleosides, separated by liquid chromatography, and then electrospray-ionized. Specific DNA adducts were identified by mass/charge number and column retention time compared to standards. Information on lifestyle factors such as tobacco smoking and alcohol drinking was taken from the clinical records of each subject.ResultsSeven DNA adducts, including modified bases, C5-methyl-2′-deoxycytidine, 2′-deoxyinosine, C5-hydroxymethyl-2′-deoxycytidine, N6-methyl-2′-deoxyadenosine, 1,N6-etheno-2′-deoxyadenosine, N6-hydroxymethyl-2′-deoxyadenosine, and C8-oxo-2′-deoxyguanosine, were identified in the human stomach and characterized. Intraindividual differences according to the multiple sites of these adducts were noted but were less substantial than interindividual differences. N6-hydroxymethyl-2′-deoxyadenosine was identified in the human stomach for the first time. The amount of C5-hydroxymethyl-2′-deoxycytidine was higher in the stomachs of subjects without gastric cancer than in the nontumor and tumor portions of the stomach in gastric cancer patients. Higher levels of 1,N6-etheno-2′-deoxyadenosine were detected in the subjects who reported both smoking and drinking than in those without these habits. These DNA adducts showed considerable correlations with each other.ConclusionsWe characterized 7 DNA adducts in the nontumor portion of the human stomach in both gastric cancer subjects and nongastric cancer subjects. A reduction in C5-hydroxymethyl-dC even in the nontumor mucosa of patients with gastric cancer was observed. Smoking and drinking habits significantly influenced the quantity of one of the lipid peroxidation-derived adducts, etheno-dA. A more expansive DNA adductome profile would provide a comprehensive understanding of the origin of human cancer in the future.

Highlights

  • The human body is influenced by various environmental factors, which occasionally may be harmful or carcinogenic [1,2,3,4,5]

  • N6-hydroxymethyl-2′-deoxyadenosine was identified in the human stomach for the first time

  • The amount of C5-hydroxymethyl-2′-deoxycytidine was higher in the stomachs of subjects without gastric cancer than in the nontumor and tumor portions of the stomach in gastric cancer patients

Read more

Summary

Introduction

The human body is influenced by various environmental factors, which occasionally may be harmful or carcinogenic [1,2,3,4,5]. We present DNA adduct detection from several loci from the mucosa of individual stomachs resected for gastric cancer or autopsied for other reasons. Comprehensive identification of DNA adducts as a form of DNA damage associated with environmental factors in the human gastric mucosa would reveal the pivotal steps in human gastric carcinogenesis. This adductomics approach will clarify various molecular events that occur in an ordinary living environment and will provide specific tools to detect and prevent DNA damage that may lead to carcinogenesis. A comprehensive understanding of DNA adducts, one of the most plausible origins of cancer mutations, is still elusive, especially in human tissues in clinical settings. Geospatial information on DNA adducts in human organs has been scarce

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call