Abstract

Prevention of fouling from proteins in blood plasma attracts significant efforts, and great progress is made in identifying surface coatings that display antifouling properties. In particular, poly(ethylene glycol) (PEG) is widely used and dense PEG-like cylindrical brushes of poly[oligo(ethylene glycol) methacrylate] (poly(OEGMA)) can drastically reduce blood plasma fouling. Herein, a comprehensive study of the variation of blood plasma fouling on this surface, including the analysis of the composition of protein deposits on poly(OEGMA) coatings after contact with blood plasma from many different donors, is reported. Correlation between the plasma fouling behavior and protein deposit composition points to the activation of the complement system as the main culprit of dramatically increased and accelerated deposition of blood plasma proteins on this type of antifouling coating, specifically through the classical pathway. These findings are consistent with observations on PEGylated drug carriers and highlight the importance of understanding the potential interactions between antifouling coatings and their environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.