Abstract
The rates at which peptide amide hydrogens in folded proteins undergo isotopic exchange are reduced by factors of 10(0)-10(-8) relative to exchange rates at the same peptide linkages in unfolded proteins. To measure the isotopic exchange rates of the most rapidly exchanging peptide amide hydrogens in proteins, a flow-quench deuterium exchange-in step has been added to the protein fragmentation/mass spectrometry method (Zhang, Z.; Smith, D. L. Protein Sci. 1993, 2, 522-531). Isotopic exchange rates in eight short segments spanning the entire backbone of cytochrome c have been determined for exchange-in times of 0.2-120 s. These results show that the isotopic exchange rates of 10 of the peptide amide hydrogens in cytochrome c are similar to those expected for unfolded cyt c, while the exchange rates for 33 other non-hydrogen-bonded amide hydrogens are much less than expected for unfolded cyt c. Since the isotopic exchange rates of the most rapidly exchanging amide hydrogens in folded proteins are a direct measure of their access to the aqueous solvent, the ability to determine these isotopic exchange rates points to the possibility of using quenched-flow amide hydrogen exchange and mass spectrometry as a tool for identifying protein surfaces involved with binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.