Abstract

Recent studies have shown TOF-SIMS to be an appropriate method for the detailed examination of the immobilization process of PNA and its ability to hybridize to unlabeled complementary DNA fragments. Unlabeled single-stranded DNA was hybridized to Si wafer biosensor chips containing both complementary and non-complementary immobilized PNA sequences. The hybridization of complementary DNA could readily be identified by detecting phosphate-containing molecules from the DNA backbone. An unambiguous discrimination was achieved between complementary and non-complementary sequences. In order to optimize detection parameters, different primary ions were applied, including monoatomic ions (Bi +) as well as cluster ions (Bi 2 +, Bi 3 +, Bi 4 +, Bi 3 ++, Bi 5 ++), and secondary ion yield behavior and formation efficiencies were studied. It was found that cluster primary ions resulted in a significantly increased yield of DNA-correlated fragments, enabling higher signal intensities and better secondary ion efficiencies. TOF-SIMS is undoubtedly a highly useful technique for identifying hybridized DNA on PNA biosensor chips. It is suitable for studying the complexity of the immobilization and hybridization processes and may provide a rapid method for DNA diagnostics. With the absence of the labeling procedure and the simultaneous increase of the phosphate signal as a result of increasing DNA sequence length, this technique comes to be especially useful for the direct analysis of genomic DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.