Abstract

Environmental contextAtmospheric aerosols have profound effects on the environment through several physicochemical processes, such as absorption and scattering of sunlight, heterogeneous gas–particle reactions and adverse effects on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental impact requires comprehensive characterisation of the physical and chemical properties of particles. Results from mass spectrometry provide important new insights into the origin of atmospheric aerosols, the evolution of their physicochemical properties, their reactivity and their effect on the environment. AbstractThis manuscript presents an overview of the most recent instrument developments for the field and laboratory applications of mass spectrometry (MS) to investigate the chemistry and physics of atmospheric aerosols. A range of MS instruments, employing different sample introduction methods, ionisation and mass detection techniques are used both for ‘online’ and ‘offline’ characterisation of aerosols. Online MS techniques enable detection of individual particles with simultaneous measurement of particle size distributions and aerodynamic characteristics and are ideally suited for field studies that require high temporal resolution. Offline MS techniques provide a means for detailed molecular-level analysis of aerosol samples, which is essential to gain fundamental knowledge regarding aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols – data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins and atmospheric evolution. Over the last few years, developments and applications of MS techniques in aerosol research have expanded remarkably as evident by skyrocketing publication statistics. The goal of this review is to present the most recent developments in the field of aerosol mass spectrometry for the time period of late 2010 to early 2012, which have not been conveyed in previous reviews.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.