Abstract

Triclosan is a chlororganic substance used as a bactericide in numerous cosmetics. Intensive triclosan use results in the exposure into the environment; therefore, it is vital to analyze and detoxify triclosan-contaminated wastewater, sludge and soil. This study investigates two analytical strategies. The first is a rapid and inexpensive electrochemical screening technique based on commercial Screen-Printed Electrodes (SPE), which delivers initial results suitable for field measurements and screening. The second is Gas Chromatography–Mass Spectrometry (GC-MS), which is more sophisticated, accurate and sensitive. This latter method can provide more reliable determination of triclosan, e.g., for suspicious samples. We tested the limits of triclosan detection for different electrochemical methods and compared these to mass spectrometry with and without derivatization of triclosan. In addition to these analytical techniques, gas phase dehalogenation was used to dechlorinate triclosan. Reductive dechlorination of triclosan occurs efficiently at moderately elevated temperatures (350-550°C) with zero valent iron. In contrast to oxidative processes, reductive dehalogenation leads to harmless and completely dechlorinated products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call