Abstract
Flavonoids represent an important class of natural products with a central role in plant physiology and human health. Their accurate annotation using untargeted mass spectrometry analysis still relies on differentiating similar chemical scaffolds through spectral matching to reference library spectra. In this work, we combined molecular network analysis with rules for fragment reactions and chemotaxonomy to enhance the annotation of similar flavonoid glyconjugates. Molecular network topology progressively propagated the flavonoid chemical functionalization according to collision-induced dissociation (CID) reactions, as the following chemical attributes: aglycone nature, saccharide type and number, and presence of methoxy substituents. This structure-based distribution across the spectral networks revealed the chemical composition of flavonoids across intra- and interspecies and guided the putatively assignment of 64 isomers and isobars in the Chrysobalanaceae plant species, most of which are not accurately annotated by automated untargeted MS2 matching. These proof of concept results demonstrate how molecular networking progressively grouped structurally related molecules according to their product ion scans, abundances, and ratios. The approach can be extrapolated to other classes of metabolites sharing similar structures and diagnostic fragments from tandem mass spectrometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.