Abstract
AbstractThe electron impact mass spectra of tert‐butyldimethylsilyl‐, cyclo‐tetramethylene‐tert‐butylsilyl and cyclo‐tetramethylene‐isopropylsilyl‐ ether derivatives of ribo‐ and 2′‐deoxyribonucleosides are described in detail. The interpretation of fragmentation pathways of full and mixed derivatives was aided by metastable ion decomposition studies, precise mass and deuterium labelling measurements, and spectra of mixed derivatives containing the ‘passive’ (in these spectra) trimethylsilyl group. The sterically crowded silyl groups have a powerful fragmentation directing effect. Elimination of a bulky radical, R˙ (tert‐butyl or isopropyl), from the molecular ion produces the siliconium ion [MR]+, which is the precursor for most of the other prominent ions in the spectra. These arise from ‘siliconium ion rearrangements’ resulting from the interaction of the positively charged siliconium ion center with electron dense regions (i.e. oxygens) in the molecule, to form cyclic silyloxonium ions which subsequently decompose. Since the interacting oxygen and silicon must be sterically accessible, the fragment ion types and their abundances are very dependent upon structure. Consequently, [MR]+ ions formed from 2′, 3′ or 5′‐O‐silyl groups give rise to different sets of daughter ions which, for the most part, are not found, or have very low abundances, in the mass spectra of underivatized or trimethylsilylated nucleosides. Detailed information on sugar and base moieties and isomeric substitution is readily obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.