Abstract

Abstract Gliclazide (GL, C15H21N3O3S) drug is used as non-insulin-dependant diabetes mellitus. The drug was investigated using thermal analysis (TA) measurements (TG/DTG) and electron impact mass spectral (EI–MS) fragmentation at 70 eV techniques. The mass spectra of GL at different values of ion source temperatures (400, 416, 425, and 440 K) are recorded and investigated. Semiempirical MO calculation, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution, ionization energy, and heats of formation (ΔH f). PM3 procedure provides a basis for fine distinction among sites of initial bond cleavage, which is crucial to the rationalization of subsequent fragmentation of the molecule. The primary fragmentation pathway in both TA and MS (at different values of ion source temperature) is initiated by S–N bond rupture. TA and DTG show one main weight loss at 250.38 °C and four peaks ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call