Abstract

We present a mechanism to sort out particles of different masses in an asymmetric channel, where the entropic barriers arise naturally and control the diffusion of these particles. When particles are subjected to an oscillatory force, with the scaled amplitude a and frequency ω, the mean particle velocity exhibits a bell-shaped behavior as a function of the particle mass, indicating that particles with an optimal mass m_{op} drift faster than other particles. By tuning a and ω, we get an empirical relation to estimate m_{op}∼(aω^{2})^{-0.4}. An additional static bias, applied in the opposite direction of the rectified velocity, would push the particles of lighter mass to move in its direction while the others drift opposite to it. This study is useful to design lab-on-a-chip devices for separating particles of different masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call