Abstract

This study of the one dimensional Su-Schrieffer-Heeger model in a weak coupling perturbative regime points out the effective mass behavior as a function of the adiabatic parameter $\omega_{\pi}/J$, $\omega_{\pi}$ is the zone boundary phonon energy and $J$ is the electron band hopping integral. Computation of low order diagrams shows that two phonons scattering processes become appreciable in the intermediate regime in which zone boundary phonons energetically compete with band electrons. Consistently, in the intermediate (and also moderately antiadiabatic) range the relevant mass renormalization signals the onset of a polaronic crossover whereas the electrons are essentially undressed in the fully adiabatic and antiadiabatic systems. The effective mass is roughly twice as much the bare band value in the intermediate regime while an abrupt increase (mainly related to the peculiar 1D dispersion relations) is obtained at $\omega_{\pi}\sim \sqrt{2}J$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.