Abstract

A vast sheet of mature quartz sand blanketed north Africa and Arabia from the Atlantic coast to the Persian Gulf in Cambro–Ordovician times. U–Pb geochronology of a representative section of Cambrian sandstone in southern Israel shows that these sediments are dominated by 550–650 Ma detrital zircons derived from Neoproterozoic Pan-African basement. The short time lag between magmatic consolidation of a Pan-African source and deposition of its erosional products indicates that, despite their significant mineralogical maturity, the voluminous quartz-rich sandstones on the northern margin of Gondwana are essentially first-cycle sediments. Mass production of these voluminous first-cycle quartz-rich sandstones resulted from widespread chemical weathering of the Pan-African continental basement. We suggest that conditions favoring silicate weathering, particularly a warm and humid climate, low relief and low sedimentation rates prevailed over large tracts of Gondwana in the aftermath of the Pan-African orogeny. An unusually corrosive Cambro–Ordovician atmosphere and humid climate enhanced chemical weathering on the vegetation-free landscape. We infer that late Neoproterozoic–Cambro–Ordovician atmospheric pCO2 rose as a consequence of widespread late Neoproterozoic volcanism, followed by an uptake of CO2 by chemical weathering to produce the Cambro–Ordovician sandstone as a negative feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.