Abstract

A strategy for the in line mass production of a three-dimensional (3D) non-woven nanofabric consisting of crystalline P3HT nanofibrils, created by in situ cooling of the transportation line to feed a P3HT solution for a coating tool, was introduced. The required cooling-temperature with respect to the feeding rate for the overall nanofibril creating process and the yield of the nanofibrils in solution with various organic solvents were determined. Considering the influence of a change in the temperature on the status of the precipitated nanofibrils until feeding it into the spray nozzle, the margin of the surviving nanofibrils at a certain temperature was also investigated. To verify the superiority of our strategy and present directions regarding its application to industry, arrays of organic solar cells based on a 3D non-woven nanofabric structure consisting of P3HT nanofibrils were designed and fabricated using our in situ process combined with a spray-coating system. As a result, through the in situ cooling process, a considerable solar energy harvesting efficiency near 4%, which is a state-of-the-art value in a bi-layer-based solar cell, was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.