Abstract

In this paper we study a model of intuitionistic higher-order logic which we call the Muchnik topos. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, the Muchnik reals, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a choice principle (8x9y A(x,y)) ) 9w 8xA(x,wx) and a bound

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call