Abstract

We review the dynamics of radiatively driven mass loss from rapidly rotating hot-stars. We first summarize the angular momentum conservation process that leads to formation of a Wind Compressed Disk(WCD) when material from a rapidly rotating star is driven gradually outward in the radial direction. We next describe how stellar oblateness and asymmetries in the Sobolev line-resonance generally leads to nonradialcomponents of the driving force is a line-driven wind, including an azimuthal spin-down force acting against the sense of the wind rotation, and a latitudinal force away from the equator. We summarize results from radiation-hydrodynamical simulations showing that these nonradial forces can lead to an effective suppressionof the equatorward flow needed to form a WCD, as well as a modest (∼ 25%) spin-downof the wind rotation. Furthermore, contrary to previous expectations that the wind mass flux should be enhanced by the reduced effective gravity near the equator, we show here that gravity darkening effects can actually lead to a reducedmass loss, and thus lower density, in the wind from the equatorial region. Finally, we examine the equatorial bistability model, and show that a sufficiently strong jump in wind driving parameters can, in principle, overcome the effect of reduced radiative driving flux, thus still allowing moderate enhancements in density in an equatorial, bistability zone wind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.