Abstract

ABSTRACTMassive globular clusters lose stars via internal and external processes. Internal processes include mainly two-body relaxation, while external processes include interactions with the Galactic tidal field. We perform a suite of N-body simulations of such massive clusters using three different direct-summation N-body codes, exploring different Galactic orbits and particle numbers. By inspecting the rate at which a star’s energy changes as it becomes energetically unbound from the cluster, we can neatly identify two populations we call kicks and sweeps that escape through two-body encounters internal to the cluster and the external tidal field, respectively. We find that for a typical halo globular cluster on a moderately eccentric orbit, sweeps are far more common than kicks but the total mass-loss rate is so low that these clusters can survive for tens of Hubble times. The different N-body codes give largely consistent results, but we find that numerical artefacts may arise in relation to the time-step parameter of the Hermite integration scheme, namely that the value required for convergent results is sensitive to the number of particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call