Abstract

[Abridged] We develop and benchmark a fast and easy-to-use effective-opacity formalism for line and continuum radiative transfer in an accelerating two-component clumpy medium. The formalism bridges the limits of optically thin and thick clumps, and is here used to i) design a simple vorosity-modified Sobolev with exact integration (vmSEI) method for analyzing UV wind resonance lines in hot, massive stars, and ii) derive simple correction factors to the line force driving the outflows of such stars. We show that (for a given ionization factor) UV resonance doublets may be used to analytically predict the upward corrections in empirically inferred mass-loss rates associated with porosity in velocity space (a.k.a. velocity-porosity, or vorosity), but that severe solution degeneracies exist. For an inter-clump density set to 1 % of the mean density, we for O and B supergiants derive upward empirical mass-loss corrections of typically factors of either ~5 or ~50, depending on which of the two applicable solutions is chosen. Overall, our results indicate this solution dichotomy severely limits the use of UV resonance lines as direct mass-loss indicators of clumped hot stellar winds. We next apply the effective-opacity formalism to the standard CAK theory of line-driven winds. By analytic and numerical hydrodynamics calculations, we show that in cases where vorosity is important at the critical point setting the mass-loss rate, the reduced line-force leads to a lower theoretical mass loss, by a factor scaling with the normalized velocity filling factor fvel. On the other hand, if vorosity is important only above this critical point, the predicted mass loss is not affected, but the wind terminal speed is reduced. This shows that porosity in velocity space can have a significant impact not only on the diagnostics, but also on the dynamics and theory of radiatively driven winds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call