Abstract

Three-body systems in two dimensions with zero-range interactions are considered for general masses and interaction strengths. The problem is formulated in momentum space and the numerical solution of the Schr\"odinger equation is used to study universal properties of such systems with respect to the bound-state energies. The number of universal bound states is represented in a form of boundaries in a mass-mass diagram. The number of bound states is strongly mass dependent and increases as one particle becomes much lighter than the other ones. This behavior is understood through an accurate analytical approximation to the adiabatic potential for one light particle and two heavy ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.