Abstract

In this paper, we study mass flow rate of rarefied gas flow through micro/nanoscale channels under simultaneous thermal and pressure gradients using the direct simulation Monte Carlo (DSMC) method. We first compare our DSMC solutions for mass flow rate of pure temperature-driven flow with those of Boltzmann-Krook-Walender equation and Bhatnagar-Gross-Krook solutions. Then, we focus on pressure–temperature-driven flows. The effects of different parameters such as flow rarefaction, channel pressure ratio, wall temperature gradient and flow bulk temperature on the thermal mass flow rate of the pressure–temperature-driven flow are examined. Based on our analysis, we propose a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number. We examine our predictive relation by simulation of pressure-driven flows under uniform wall heat flux (UWH) boundary condition. Walls under UWH condition have non-uniform temperature distribution, that is, thermal creep effects exist. Our investigation shows that developed analytical relation could predict mass flow rate of rarefied pressure-driven gas flows under UWH condition at early transition regime, that is, up to Knudsen numbers of 0.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call