Abstract

8009 Background: Measuring response among patients with multiple myeloma is essential for the care of patients. Deeper responses have been associated with better progression free survival (PFS) and overall survival (OS). Serum (SIFE) and urine immunofixation are the currently used markers for biochemical documentation of CR after which marrow is tested for plasma cell clearance. Next generation flow cytometry and sequencing are used to document the presence of minimal residual disease (MRD). Mass spectrometry of blood by MALDI (Mass-Fix) is a new simple, inexpensive, sensitive, and specific means of detecting monoclonal immunoglobulins. To better test the hypothesis that Mass-Fix is superior to existing methodologies to predict for survival outcomes—especially SIFE-- samples from the STAMINA trial (NCT01109004), a trial comparing 3 transplant approaches among patients who have already received induction, were employed. Methods: Five-hundred and seventy-five patients were included. Samples from enrollment post-induction (post-I) and 1-year post enrollment (1YR) were tested when available. Four response parameters were assessed univariately: Mass-Fix, SIFE, complete response, and MRD by next generation flow cytometry. Mass spectrometry spectra were evaluated in a blinded fashion. Complete response was according to the 2006 International Myeloma Working Group criteria. Multivariate Cox proportional hazard models using stepwise regression were developed to explore the independent effect of the different response parameters on PFS and OS and interactions with other risk factors. Results: Of the 4 response measures, only MRD and Mass-Fix predicted for PFS and OS at multiple testing points on multivariate analyses (Table). Of the 4 post-I measurements, only MRD predicted for PFS; however, Mass-Fix was the only post-I measurement to predict for OS. Of all the 1-year measures, both 1YR Mass-Fix and 1YR MRD positivity predicted for inferior PFS and OS. In models including MRD and Mass-Fix, SIFE and CR were not prognostic for PFS or OS. Conclusions: Mass-Fix is a powerful means to track monoclonal proteins. The full utility of Mass-Fix was not exploited given the absence of a diagnostic sample and the fact that only serum (and not urine) was tested. Despite these limitations, it performed well at pre-induction and at 1 year. Mass-Fix provides a convenient and non-invasive means of predicting for myeloma outcomes. Clinical trial information: NCT01109004. [Table: see text]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call